研究致力于解析人类疾病的遗传学基础:运用统计基因组学、大型队列、遗传流行病学、实验生物学和深度学习等多学科方法,整合单细胞多组学及功能基因组学,解析人类疾病(包括眼科疾病、神经精神类疾病等)的遗传基础和分子机制,揭示疾病发生、发展、转化的复杂过程,识别关键生物标志物,发掘潜在药物干预靶点,为疾病的早期筛查、风险预测、治疗及预后评估等提供精准化方案。
主要相关研究领域:
1)结合遗传流行病学、统计基因组学与进化基因组学等方法,解析疾病的遗传学基础。
2)采用单细胞多组学、功能基因组学等方法与前沿技术,探究疾病从遗传到表观遗传、从基因到蛋白表达、从细胞到组织器官的多层次信息调控机制。
3)深度学习在基因组学与健康医疗大数据中的方法及应用。
4)主要研究疾病领域:眼科疾病(青光眼,视黄斑变性等)、神经精神类疾病等。
代表性研究包括:
1)基于大脑组织单细胞多组学,探究神经精神类疾病的功能基因组学基础(Nature, under review, first author,2024);
2)基于多组学、功能基因组学,鉴定潜在的青光眼基因药物靶点(Nature Genetics 2023);
3)整合大型队列遗传学,鉴定青光眼易感位点,系统评价遗传风险预测模型及临床应用价值(Nature Genetics 2020);
4)采用深度学习、大规模影像学、基因组学,进行跨种族遗传学研究(American Journal of Human Genetics 2021)。
信息暂无
« † first author, *corresponding author »
1. Han X†*, Gharahkhani P†, Hamel AR, Ong JS, …, Hewitt AW, Craig JE, Pasquale LR, Mackey DA, Wiggs JL, Khawaja AP, Segrè AV, MacGregor S. Large scale multi-trait genome-wide association analysis identifies hundreds of glaucoma risk loci. Nature Genetics. 2023; 55(7):1116-1125.
2. Craig JE†, Han X†*, Qassim A†, Hassall M, …, Wiggs JL, Hewitt AW, MacGregor S. Multitrait analysis of glaucoma identifies new loci and enables effective polygenic risk score prediction of disease susceptibility, progression. Nature Genetics. 2020; 52(2):160-166.
3. Han X*, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, An J, Siggs OM, Gharahkhani P, Craig JE, Hewitt AW, Trzaskowski M, MacGregor S. Automated AI labelling of optic nerve head enables new insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. American Journal of Human Genetics. 2021; 108(7):1204-1216.
4. Li C, Chen K, Fang Q, Shi S, Nan J, He J, Yin Y, Li X, Li J, Hou L, Hu X, Kellis M, Han X*, Xiong X*. Crosstalk between epitranscriptomic and epigenomic modifications and its implication in human diseases. Cell Genomics. 2024, doi: 10.1016/j.xgen.2024.100605.
5. Han X*, Lains I, Li J, Li J, Chen Y, Yu B, Qi Q, Boerwinkle E, Kaplan R, Thyagarajan B, Daviglus M, Joslin CE, …, Miller J, Hu F, Willett W, Lasky-Su J, Kraft P, Richards JB, MacGregor S, Husain D, Liang L. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration. Cell Reports Medicine. 2023;4(7):101085.
6. Han X*, Hewitt AW, MacGregor S. Predicting the future of genetic risk profiling of glaucoma: a narrative review. JAMA ophthalmology. 2021;139(2):224-231.
7. Han X†, Souzeau E†, Ong JS, An J, Siggs OM, Burdon KP, …, Hewitt AW, Gharahkhani P, Craig JE, MacGregor S*. Myocilin Gene Gln368Ter Variant Penetrance and Association With Glaucoma in Population-Based and Registry-Based Studies. JAMA Ophthalmology. 2019; 137(1):28-35.
8. Han X*, Gharahkhani P, Mitchell P, Liew G, Hewitt AW, MacGregor S. Meta-analysis of genome-wide association studies identify novel genes for age-related macular degeneration. Journal of Human Genetics. 2020; 65(8):657-665.
9. Han X*, Ong JS, Hewitt AW, Gharahkhani P, MacGregor S. The effects of eight serum lipid biomarkers on age-related macular degeneration risk: a Mendelian randomization study. International journal of epidemiology. 2021; 50(1):325-336.
10. Han X*, Liang L*. metabolomicsR: a streamlined workflow to analyze metabolomic data in R. Bioinformatics Advances. 2022; 2(1):vbac067.